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Abstract

We study a directed flipping process that underlies the performance of the
random edge simplex algorithm. In this stochastic process, which takes place
on a one-dimensional lattice whose sites may be either occupied or vacant,
occupied sites become vacant at a constant rate and simultaneously cause all
sites to the right to change their state. This random process exhibits rich
phenomenology. First, there is a front, defined by the position of the leftmost
occupied site, that propagates at a nontrivial velocity. Second, the front involves
a depletion zone with an excess of vacant sites. The total excess �k increases
logarithmically, �k � ln k, with the distance k from the front. Third, the
front exhibits ageing—young fronts are vigorous but old fronts are sluggish.
We investigate these phenomena using a quasi-static approximation, direct
solutions of small systems and numerical simulations.

PACS numbers: 02.50.−r, 05.40.−a, 05.70.Ln, 89.20.Ff

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The simplex algorithm [1] is a widely used and remarkably efficient method to solve linear
programming problems: minimizing a linear objective function over a polyhedron in d
dimensions. Without loss of generality the problem is equivalent to finding the vertex of
the polyhedron where the objective function is minimal. A simplex algorithm is then a walk
on the vertices, where the rules of the walk, the so-called pivotal rules, have to be specified.
While efficient in the typical case, deterministic simplex algorithms require an exponential time
in the worst cases [2, 3]. Randomized versions of the simplex algorithm have an improved
running time that is polynomial or sometimes even quadratic in d [4]. The random edge
simplex algorithm was investigated [4] on distorted d-dimensional cubes (Klee–Minty cubes
[2]). It is essentially a random walk along the edges of the d-cube, where the next move is
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Figure 1. Illustration of the flipping process. The arrow indicates the direction of time and the
line indicates the position of the advancing front.

chosen uniformly among edges leading to decrease in the objective function. Each vertex
of the d-cube is identified by a sequence of 0 and 1 bits of length d. After an appropriate
transformation of these coordinates, the walk reduces to a simple asymmetric flipping process
involving the 0 and 1 bits [4] (and d can be taken to be infinite [5]).

In this flipping process, an infinite sequence of 0 and 1 bits evolves by flipping randomly
chosen 1 bits and simultaneously flipping all bits to the right. Figure 1 illustrates how the
underlined bit flips all bits to the right. When flips occur at a constant and spatially uniform
rate, the position of the leftmost 1 bit moves to the right at a constant average velocity. Finding
the minimal vertex in a d-cube translates into the front traveling distance d in the flipping
process. During this time an order d2 total flips occur, which then implies quadratic running
times for the simplex method. Thus, a ballistically propagating front in the flipping process
implies a quadratic running time for the random edge simplex algorithm. Previous formal
studies were primarily concerned with establishing the ballistic front motion rigorously [5],
yet most of the questions concerning the flipping process, including the propagation velocity,
remain largely unanswered.

We approach this random process as a nonequilibrium dynamics problem and by utilizing
a host of theoretical and computational methods, we find that this directed flipping process
exhibits interesting phenomenology beyond the ballistic front propagation. We also propose a
modified process where front propagation is forbidden and show that this process, for which
further theoretical analysis is possible, provides an excellent quantitative description.

Our starting point is a quasi-static approximation. In this description, the shape of the
propagating front is assumed to be fixed and additionally, spatial correlations are ignored.
This approximation yields a qualitative description for the overall shape of the front and an
exact description for the shape far away from the front. The propagating front consists of
a depletion zone as the number of 0 bits exceeds the number of 1 bits, and the cumulative
depletion grows logarithmically with distance from the front.

Direct numerical simulations of the flipping process reveal that spatial and temporal
correlations are substantial. In general, neighboring bits are correlated as manifested by the
increased likelihood of finding consecutive strings of identical bits. There is also ageing. The
state of the system strongly depends on age, defined as the time elapsed since the most recent
front advancement event. In particular, young fronts are more rapid than old fronts.

We also develop a formal solution method that describes the evolution of a finite segment
that includes the front. In this approach, the time evolution of all microscopic configurations
of a finite segment is described under the assumption that the system is completely random
outside the segment. The predictions improve systematically as the segment size increases
but there is a limitation since the number of configurations grows exponentially with segment
size. Nevertheless, we are able to obtain accurate estimates for quantities of interest including
the propagation velocity by using Shanks extrapolation.
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In the directed flipping process, the system does not reach a steady state because of
the perpetual motion of the front, yet when the front is pinned, the system does settle into
a steady state. We therefore also examined a modified process in which the flipping of
the leftmost bit is forbidden. Remarkably, this pinned front process provides an excellent
quantitative approximation of the original propagating front process. In this case, we are able
to obtain several exact results. For example, we can show that a pair of neighboring sites is
correlated. Moreover, the small system solution is now exact and combined with the Shanks
transformation, yields excellent results for the velocity.

The remainder of this paper is organized as follows. In section 2, titled ‘propagating
fronts’, we investigate the original flipping process. We begin with a quasi-static approximation
for the shape of the front, continue with numerical simulations that elucidate spatial and
temporal correlations and finish with analysis of small segments. In section 3, titled ‘pinned
fronts’, we examine the corresponding behaviors in a modified flipping process where the
front is pinned and hence further theoretical analysis is possible. Conclusions are presented
in section 4.

2. Propagating fronts

The flipping process takes place on an infinite one-dimensional lattice whose sites may be in
one of the two states. If σi denotes the state of ith site then σi = 1 corresponds to an occupied
site, a 1 bit, and σi = 0 corresponds to a vacant site, a 0 bit. In the flipping process, each
occupied site may ‘flip’ from the occupied state to the vacant state and consequently cause all
sites to the right to simultaneously change their state. For example, when the j th site flips

σi → 1 − σi, for all i � j. (1)

The flipping process is uniform: all occupied sites flip at a uniform rate, set to one without
loss of generality. Note that the interaction range is infinite: every flip event affects an infinite
number of sites! This is in contrast, for example, with constrained spin dynamics such as the
east model [6–8] where the flipping is caused only by the neighboring spin on the left. We also
note that similar semi-infinite spin flip dynamics occur in diffusion-controlled annihilation
processes [9].

Vacant sites with no occupied sites to their left remain vacant forever. Moreover, the
leftmost occupied site defines a front that advances to the right, as shown in figure 1. We
consider the natural initial condition where all sites left of the origin are vacant, σi(t = 0) = 0
for all i < 0, the origin is occupied σ0(t = 0) = 1, and all sites right of the origin are randomly
occupied: with equal probabilities σi(t = 0) = 1 or σi(t = 0) = 0 for all i > 0.

2.1. Front profile and depletion

We index the system using a reference frame that is moving with the front. Specifically, we
characterize lattice sites by their distance k from the front, and by definition, σ0 = 1. The
profile of the advancing front is best described by the density ρk(t), the average occupation
at distance k from the front at time t, ρk(t) ≡ 〈σk(t)〉, where the brackets indicate an average
over all realizations of the random process.

Our theoretical description involves two simplifying assumptions. If we overlook the
motion of the front, the densities satisfy

d〈σk〉
dt

=
〈(

k−1∑
j=0

σj

)
(1 − σk)

〉
−

〈(
1 +

k−1∑
j=0

σj

)
σk

〉
(2)
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Figure 2. The density profile ρk , obtained from the quasi-static approximation (solid line) and
from the Monte Carlo simulation (broken line).

for k > 0. The gain term on the right-hand side accounts for vacant sites changing into
occupied sites and conversely, the loss term represents occupied sites changing into vacant
sites. Since every occupied site to the left can cause a vacant site to change, the gain rate at
the kth site equals the total number of occupied sites to the left. The loss rate, however, is
larger by one because a flip at the site itself can also cause an occupied site to change.

The evolution equations (2) are hierarchical: the equation for one-site averages involves
two-sites averages, the equation for two-site averages involves three-site averages, etc. If we
ignore possible correlations between different sites and approximate two-site averages by the
product of the respective single site averages 〈σjσk〉 → 〈σj 〉〈σk〉, the densities satisfy the
closed equation

dρk

dt
=

⎛
⎝k−1∑

j=0

ρj

⎞
⎠ (1 − ρk) −

⎛
⎝1 +

k−1∑
j=0

ρj

⎞
⎠ ρk. (3)

The flipping rates in equations (2) and (3) reflect the fact that occupied sites change at a higher
rate than vacant sites.

Our final assumption is that in the reference frame moving with the front, the system is
quasi-static. Indeed, by definition dρ0/dt = 0, and we further assume dρk/dt = 0 for all k.
The stationary density profile is

ρk =
∑k−1

j=0 ρj

2
∑k−1

j=0 ρj + 1
. (4)

This recursive equation is solved subject to the boundary condition ρ0 = 1. For small k we
have

ρk = 1,
1

3
,

4

11
,

56

145
, k = 0, 1, 2, 3, . . . . (5)

Despite the crude simplifying assumptions, this quasi-static approximation provides the
following valuable insights (see figure 2):

(1) Depletion. With the exception of the occupied front, all sites are more likely to be vacant,
ρk < 1/2 for all k > 0. In other words, the propagating front includes a depletion zone.
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This depletion is a direct consequence of the fact that occupied sites change at a higher
rate than vacant sites. In other words, vacant sites have a larger lifetime.

(2) Monotonicity. The density profile is monotonic, ρi > ρj for i > j > 1.

The tail of the density profile can be obtained by noting that ρk → 1/2 as follows from
(4). Consequently, the average total ‘mass’ to the left of a given site, mk = ∑k−1

j=0 ρj , grows
linearly with distance, mk � k/2. At large distances, the recursion equation for the density
ρk = mk/(2mk + 1) can be re-written as ρk � 1

2 − 1
4mk

and therefore,

ρk � 1

2
− 1

2k
. (6)

Far away from the front, sites are occupied at random as ρk → 1/2 for k → ∞. Indeed, sites
at the tail change their state extremely rapidly at rates that grow linearly with distance. These
rapid changes effectively destroy spatial correlations. Moreover, the advancement of the front
becomes irrelevant at large distances. Hence, the two assumptions underlying our theory are
inconsequential in the tail region and (6) is in fact exact. We comment that the algebraic
tail (6) is unusual because traveling waves are typically characterized by exponential tails
[10, 11].

The tail behavior (6) can be derived directly by comparing the flipping rate of occupied
and unoccupied sites. Our only assumption is that the state of the system is random far away
from the front, ρk → 1/2 for k → ∞. Consequently, the total mass grows linearly with
distance, mk � k/2. Now, we simply consider an individual site as a two-state system: the
flipping of an occupied site is mk + 1 while the flipping rate of an unoccupied site is mk . The
average occupation equals the ratio between the flipping rate at the unoccupied state and
the sum of the two flipping rates, ρk = mk/(2mk + 1), and consequently (6) follows. The
algebraic correction is a direct consequence of the fact that the flipping rate grows with distance
and the fact that the flipping rate of occupied sites is larger by one. This derivation does not
require the mean-field assumption that pairs of sites are uncorrelated.

The cumulative expected excess of vacant sites over occupied sites, �k = ∑k−1
j=0(1−2ρj ),

measures the extent of the depletion zone. This quantity follows from the tail behavior (6),
�k = k − 2mk , and since mk � (k − ln k)/2, the excess of vacant sites grows logarithmically
with distance,

�k � ln k. (7)

Thus, the total excess of vacant sites is divergent!
We confirmed the theoretical predictions for the algebraic tail (6) and the logarithmic

growth of the excess (7) using massive Monte Carlo simulations (figure 3). Also, the overall
shape of the density is qualitatively captured by the quasi-static approximation, except for the
fact that ρ2 < ρ1 (figure 2). The numerical simulations are straightforward. In each simulation
step one site is chosen at random. If this site is occupied, the state of the site and all sites
to the right change according to (1), but otherwise, nothing happens. After each step, time
is augmented by the inverse of the system size t → t + L−1 where L is the number of sites
in the lattice. In our implementation, the front is always located at the zeroth site, σ0 = 1.
Whenever the front advances by n sites, all lattice sites are appropriately shifted to the left,
σi → σi−n (the n rightmost sites are reoccupied at random). Subsequently, the front position
is augmented by n. This efficient implementation allows us to simulate the evolution of the
system up to extremely large times. We can evolve a system of size L = 102 up to time
t = 1011, and we obtain statistical averages from snapshots of the system taken at unit time
intervals.
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Figure 3. The total excess of empty sites �k versus distance k. The simulations are in a system of
size L = 1000.

2.2. Front propagation

Whenever the leftmost site flips, the front position x advances by n lattice sites,

· · · 0000 11111︸ ︷︷ ︸
n

0100 · · · → · · · 0000 00000︸ ︷︷ ︸
n

1011 · · · . (8)

Hence, the leftmost string of occupied sites governs the front propagation. Like all other sites,
the front flips at a unit rate, and consequently, the average front position grows ballistically,

〈x〉 � vt, (9)

and the propagation velocity v equals the average size of the leftmost occupied string v = 〈n〉.
Let Sn be the probability that the leftmost n lattice sites including the front are all occupied,

Sn ≡ Prob(11111︸ ︷︷ ︸
n

). (10)

The probability of finding a string of exact length n as in (8) is equal to Sn −Sn+1, and therefore
the velocity is given by v = 〈n〉 = ∑∞

n=1 n(Sn − Sn+1). Consequently, the velocity equals the
sum of string probabilities

v =
∞∑

n=1

Sn. (11)

In the quasi-static approximation (QSA), correlations between different sites are neglected
and, hence, the string probability (10) is a product over the corresponding densities,

Suncorr
n = ρ1ρ2 · · · ρn−1, (12)

for n > 1 while S1 = 1. With this approximate expression, the propagation velocity is
v = 1 + ρ1 + ρ1ρ2 + ρ1ρ2ρ3 + · · ·. We obtain the approximate velocity

vQSA = 1.534 070 (13)

by substituting the densities from (4) into (12) and then summing numerically. The velocity
(13) obeys the obvious bounds 1 � v � 2, at least for the quasi-static approximation. The
lower bound reflects that the front must advance by at least one lattice site, and the upper
bound corresponds to the completely random configuration, ρk = 1/2 and Sn = 2−(n−1).
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Figure 4. The average position of the leftmost bit 〈x〉 versus time t. The results are from a Monte
Carlo simulation in a system of size L = 102, evolved up to time t = 1011. The inset shows the
velocity v = d〈x〉/dt versus time.

The numerical simulations confirm that the front advances ballistically (figure 4) but the
propagation velocity is larger than the value predicted by the quasi-static approximation

vMC = 1.7624 ± 0.0001. (14)

Strong spatial correlations are primarily responsible for the discrepancy between (13) and
(14). Indeed, if we substitute the densities ρk obtained from the Monte Carlo simulations
into the product expression (12) and perform the summation in (11), we obtain the value
v = 1.5329 ± 0.0001 that is surprisingly close to the quasi-static approximation (13). We
therefore conclude that spatial correlations between neighboring sites have a significant effect
on the velocity.

2.3. Correlations and ageing

Spatial structures and spatial correlations can be quantified in multiple ways and we focus
on the likelihood of occupied strings Sn. Numerically, we find that this quantity decays
exponentially (figure 5),

Sn ∼ n−νλn, (15)

as n → ∞ with λ = 0.745 ± 0.001 and ν ≈ 1. The quasi-static approximation yields much
more rapid decay, λ = 1/2 and ν = 1 as follows from the algebraic tail (6) and the product
expression (12). Of course, when sites are completely uncorrelated, one also has λ = 1/2.
The fact that λ is larger than 1/2 reflects that the system is strongly correlated. There is a
significant enhancement of strings of consecutively occupied sites and this enhancement is
largely responsible for the larger velocity (14).

Even though spatial correlations are significant and affect quantities of interest such as the
velocity, they are limited in extent as indicated by the exponential decay of the string likelihood.
For this reason, numerical simulations may be performed in relatively small systems. Given
the spatial extent of strings shown in figure 5, we performed the simulations using a relatively
small system, L = 200. This system size is used throughout this investigation, unless noted
otherwise.

We also probed the correlation between two successive front ‘jumps’ as a measure of
temporal correlations. Let n and n′ be the sizes of two consecutive jumps, respectively. If the

7
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Figure 5. The string probability Sn versus the string length n. The results are from a Monte Carlo
simulation in a system of size L = 200, evolved up to time t = 1011.

front advances via a renewal process then 〈nn′〉 = 〈n〉2 = v2. However, the numerical
simulations yield 〈nn′〉 = 2.959 ± 0.001 while v2 = 3.1060 ± 0.0001. Thus, front
advancement events are correlated, so the state of the system just after a jump is correlated
with the state of the system just before a jump.

This temporal correlation affects, in particular, the diffusion coefficient D that quantifies
the uncertainty in the front position,

〈x2〉 − 〈x〉2 � 2Dt. (16)

Numerically, we find D = 2.856 ± 0.001. In contrast with the velocity (11) that follows from
average quantities such as the average segment density, the diffusion coefficient requires more
detailed information about temporal correlations5.

To further characterize the dynamics, we define the age τ as the time elapsed since
the most recent front jump. Moreover, we define the age-dependent velocity u(τ) as the
average size of the leftmost string n as in (8) at age τ because this quantity governs the front
propagation. The simulations show that the velocity rapidly decays with age (figure 6). Of
course, since long-living fronts outlive any of their occupied neighbors, u → 1 as τ → ∞.
Ageing fronts are therefore sluggish. In contrast, newly born fronts are much more vigorous
because u(0) > v. Since the flipping process is completely random, the survival probability
of a front position decays exponentially with age. The average velocity in (11) is the weighted
integral of the age-dependent velocity

v =
∫ ∞

0
dτ u(τ) e−τ (17)

and the weight equals the exponential survival probability.
The age dependence of the velocity implies that the shape of the front must also be age

dependent. We therefore measured the density profile ck(τ ) = 〈σk(τ )〉, defined as the average
occupation at distance k from the front at age τ . We find interesting evolution with age. The
profile of long-living fronts has a depletion zone and is qualitatively similar to the average
profile discussed above, but the profile of newly born fronts has an enhancement of occupied
sites over vacant sites (figure 7). This revitalization is intuitive: the state of the system just

5 It is simple to show for a renewal process, Drenew = 1
2 〈n2〉, but this value underestimates the diffusion coefficient,

Drenew = 2.750 ± 0.001.
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Figure 7. The density profile ck versus distance k at different ages.

after a jump is a mirror image of the state of the system just before the jump as 0’s and 1’s
are swapped. Long-living fronts are followed by a large string of vacant sites, and these
fronts are necessarily slow. Yet, upon flipping, such sluggish fronts revitalize as the string of
vacant sites become a string of occupied sites. Interestingly, the density profile may even be
non-monotonic at intermediate ages.

In conclusion, the flipping process involves all the hallmarks of nonequilibrium dynamics
including spatial correlations, temporal correlations and ageing [12].

2.4. Small segments

We complete the analysis with a direct solution for the state of small segments containing
the front. The k leftmost sites can be in any one of the 2k−1 possible configurations. The
equations describing the configuration probabilities are hierarchical: due to the front motion,
the state of small segments containing the front is coupled with the state of larger segments.
To overcome this closure issue, we propose an approximation where the state of the system
outside the segment of interest is completely random, as in our simulation method. Clearly,
this approximation becomes exact as k → ∞.

9
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A segment of length two can be in one of the two configurations: 10 or 11. The respective
probabilities P10 and P11 evolve according to

dP10

dt
= −P10 + P11 +

1

2
P11 +

1

2
P10 (18a)

dP11

dt
= −2P11 +

1

2
P11 +

1

2
P10. (18b)

We explain the latter equation in detail. The loss rate in (18b) equals two because any of the
two occupied sites may flip. If the front flips, there is advancement, and since the second site
is occupied with probability 1/2, the gain terms are 1

2P11 and 1
2P10. The steady state solution

is (P10, P11) = 1
4 (1, 3); therefore ρ1 = 1/4. We denote by vk the velocity obtained from a

segment of length k. For k = 2 we have v2 = P10 + 3P11 since the front advances by one site
when the front flips in the state 10, but it advances three sites in the state 11 (two sites plus an
average of one, given the random occupation outside the segment).

For k = 3, the governing equations are

dP100

dt
= −P100 +

3

2
P101 +

1

4
P110 +

5

4
P111 (19a)

dP101

dt
= −3

2
P101 +

5

4
P110 +

1

4
P111 (19b)

dP110

dt
= 1

2
P100 − 7

4
P110 +

5

4
P111 (19c)

dP111

dt
= 1

2
P100 +

1

4
P110 − 11

4
P111. (19d)

The steady state solution is (P100, P101, P110, P111) = 1
56 (27, 11, 12, 6); thus, the densities are

ρ1 = 9/28, and ρ2 = 17/56 and the velocity is v3 = 43/28. Furthermore, v4 = 10907/6872
and the approximation steadily improves as k increases.

We can compute the configuration of segments with k � 12 as detailed in appendix A. To
extrapolate the velocity, we use the Shanks transformation [13]

v
(m+1)
k = v

(m)
k−1v

(m)
k+1 − v

(m)
k v

(m)
k

v
(m)
k−1 + v

(m)
k+1 − 2v

(m)
k

, (20)

where v(m)
n is the velocity estimate after m iterations. Repeated Shanks transformations give

a useful estimate for the propagation velocity (see table 1),

vShanks = 1.76 ± 0.01. (21)

The Shanks transformation is constructed for situations where the correction to the asymptotic
behavior decays exponentially and indeed, the string probability, which governs the velocity,
does exhibit an exponential decay (15). Thus, we expect that the Shanks transformation
converges to the ultimate velocity. The error bars were straightforwardly inferred from the
discrepancies in the deepest iteration of the Shanks transform. The Shanks transformation can
be used to estimate other quantities as well. For example, we obtain an excellent estimate for
the density of the first site, ρ1 = 0.3492 ± 0.0001, in perfect agreement with the Monte Carlo
simulations result.

10
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Table 1. The velocity v, obtained by successive iterations of the Shanks transformation
(propagating fronts).

k v
(0)
k v

(1)
k v

(2)
k v

(3)
k v

(4)
k

2 1.500 000
3 1.535 714 1.418 947
4 1.587 165 1.826 205 1.779 225
5 1.629 503 1.773 099 1.765 862 1.764 458
6 1.662 201 1.766 730 1.764 592 1.758 245 1.762 322
7 1.687 108 1.765 129 1.763 533 1.770 104 1.765 175
8 1.705 987 1.764 330 1.762 272 1.761 669
9 1.720 251 1.763 754 1.761 864

10 1.730 993 1.763 313
11 1.739 055

Table 2. The velocity v, the diffusion coefficient D, the decay constant governing the string
probability λ, and the first few densities ρk for propagating and pinned fronts. The results are from
Monte Carlo simulations in a system of size L = 200 evolved up to time t = 1011. The exact
solution for the density profile is detailed below.

Quantity Propagating fronts Pinned fronts

v 1.7624 1.7753
D 2.856 3.178
λ 0.74 0.75

ρ1 0.3492 1/3
ρ2 0.3400 1/3
ρ3 0.3479 41/120

3. Pinned fronts

As discussed above, the quasi-static approximation neglects the movement of the front and
possible correlations between sites. Of these two assumptions, the latter is more significant.
We therefore modify the original flipping process and forbid the front from changing state.
This minor modification pins the front and allows us to focus on the role of correlations. While
the front does not move, it is still sensible to measure the velocity and the diffusion coefficient
by using the running total of segment lengths at the time when the origin causes a flip as a
surrogate for the front position x.

In the pinned process, a flip event at every site other than the origin changes the state of
the system exactly as in (1), but a flip event at the origin yields

σi → 1 − σi, for all i > 0. (22)

Hence, the site at the origin is always occupied, σ0(t) = 1.
Remarkably, pinning the front results in only minor quantitative changes. All quantities

of interest including the velocity v, the diffusion coefficient D, the decay constant underlying
the decay of the segment density λ, and the density profile ρk are all within a few percent of
the corresponding values for propagating fronts (table 2). In particular, the discrepancy in the
propagation velocity is smaller than 1%,

vpinned = 1.7753 ± 0.0001. (23)
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Figure 8. The density ρk versus distance k for pinned and propagating fronts. Both profiles are
obtained using Monte Carlo simulations.

Finally, we cannot exclude the possibility that the string probability Sn is characterized by the
same parameter λ in both processes (table 2).

In addition, pinned fronts and propagating fronts have very similar density profiles
(figure 8). The quasi-static approximation, which is better suited for pinned fronts, becomes
slightly more accurate. Of course, the exact tail behavior (6) and the logarithmic excess (7)
extend to pinned fronts.

3.1. Spatial correlations

The hierarchical evolution equation (2) for the average occupation only assumes that the front
is pinned and hence, this equation provides an exact description. Therefore, the single-site
averages and the two-site averages are related,

〈σk〉 −
k−1∑
j=0

〈σj 〉 = −2
k−1∑
j=0

〈σjσk〉, (24)

at the steady state. Of course, 〈σ0〉 = 1.
We can obtain the nearest-neighbor correlation 〈σkσk+1〉, a quantity that evolves

according to

d〈σkσk+1〉
dt

= −
〈⎛
⎝2 +

k−1∑
j=0

σj

⎞
⎠ σkσk+1

〉
+

〈⎛
⎝k−1∑

j=0

σj

⎞
⎠ (1 − σk)(1 − σk+1)

〉
. (25)

This equation is very similar to the equation governing the one-site correlation. The rate of
change for two occupied sites is 2 +

∑k−1
j=0 σj because either one of the two sites can flip.

In general, the equation for two-site correlations involves three-site correlations, but in the
particular case of neighboring sites, the three-site correlation cancels in (25)! We therefore
obtain a relation between average densities and two-site correlations

k−2∑
j=0

〈σj 〉 = 〈σk−1σk〉 +
k−2∑
j=0

〈σjσk−1〉 +
k−1∑
j=0

〈σjσk〉. (26)
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There are two different relations between the average density and the two-site correlation:
equations (24) and (26). By manipulating the two, we obtain the nearest-neighbor correlation
in terms of the average density,

〈σkσk+1〉 = 1
2 〈σk+1〉 (27)

for k > 0. This relation demonstrates that neighboring sites are positively correlated,

〈σkσk+1〉 − 〈σk〉〈σk+1〉 = (
1
2 − 〈σk〉

)〈σk+1〉. (28)

We also note that correlations decay slowly at large distances as equations (6) and (28) imply
〈σkσk+1〉 − 〈σk〉〈σk+1〉 � (4k)−1.

For completeness, we mention that the correlation between three consecutive sites can
also be written as a function of lower-order correlations

〈σkσk+1σk+2〉 = 1
2 〈σk+2(1 − σk)〉. (29)

3.2. Small systems

When the front is pinned, the system reaches a stationary state. This steady state can be
obtained exactly for a small system by considering the evolution of all possible configurations.
For pinned fronts, finite segments are not affected by flipping outside the segment and,
consequently, the evolution equations are now closed.

Consider for example a system with two sites. There are two possible configurations: 10
and 11 with the respective probabilities P11 and P10. These probabilities evolve according to

dP10

dt
= −P10 + 2P11 (30a)

dP11

dt
= −2P11 + P10. (30b)

Hence, at the steady state, (P10, P11) = 1
3 (2, 1) and consequently, ρ1 = S2 = 1/3.

Next we consider the first three sites with the four configurations 100, 101, 110, 111. The
evolution equations for the respective probabilities are

dP100

dt
= −P100 + P110 + P111 + P101 (31a)

dP101

dt
= −2P101 + 2P110 (31b)

dP110

dt
= −2P110 + P101 + P111 (31c)

dP111

dt
= −3P111 + P100. (31d)

The steady state solution is (P100, P101, P110, P111) = 1
6 (3, 1, 1, 1). Therefore ρ1 = ρ2 = 1/3

and S3 = 1/6. Results for k � 4 are summarized in table 3.
In general, there are 2k−1 microscopic configurations in a system of size k. We can

compute the stationary probabilities for systems of size k � 12 as detailed in appendix B.
Knowledge of these steady state probabilities yields the density ρk , the string probability Sk ,
and hence, an estimate for the velocity vk = ∑k

n=1 Sn.
The velocity, as well as other quantities of interest, can be obtained very accurately using

the Shanks transformation. We find vShanks = 1.7753 ± 0.0001, in perfect agreement with the
Monte Carlo simulations (23) as shown in table 4.
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Figure 9. The density ck at different ages for pinned fronts (broken lines) and propagating fronts
(solid lines).

Table 3. The density ρk , the string density Sk and the velocity vk = ∑k
n=1 Pn obtained by direct

solution of the microscopic evolution equations.

k ρk Sk+1 vk+1

0 1 1 1
1 1

3
1
3

4
3

2 1
3

1
6

3
2

3 41
120

23
240

383
240

4 76121
216000

25577
432000

714977
432000

Table 4. Iterated Shanks transformations for the velocity. The zeroth column is from the small
system solution (pinned fronts).

k v
(0)
k v

(1)
k v

(2)
k v

(3)
k v

(4)
k

1 1
2 1.333 333 1.666 666
3 1.5 1.725 49 1.769 737
4 1.595 833 1.750 742 1.773 156 1.775 020
5 1.655 039 1.762 616 1.774 362 1.775 178 1.775 278
6 1.693 228 1.768 521 1.774 849 1.775 239 1.775 289
7 1.718 565 1.771 576 1.775 065 1.775 267 1.775 293
8 1.735 709 1.773 205 1.775 170 1.775 280 1.775 293
9 1.747 473 1.774 095 1.775 223 1.775 287

10 1.755 632 1.774 593 1.775 252
11 1.761 337 1.774 876
12 1.765 350

3.3. Ageing

We also examined the evolution with age and found that pinned and propagating fronts display
very similar behaviors, as evident from the age-dependent density ck(τ ) (figure 9).
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For pinned fronts, the zero age configuration is the exact mirror image of the configuration
just before the flip and since the front flips at random,

ck(τ = 0) = 1 − ρk (32)

for all sites except the origin, k > 0. This expression demonstrates the enhancement of
occupied sites for newly born configurations.

Ageing can be conveniently studied using small systems. For the first site, we have
dc1/dτ = −c1 and therefore, c1(τ ) = c1(0) e−τ . The initial condition, c1(0) = 1 − ρ1 = 2/3
follows from (32). Therefore,

c1(τ ) = 2
3 e−τ . (33)

For the first two sites, there are four configurations: 100, 101, 110, 111, and the respective
probabilities evolve according to

dP100

dτ
= P111 + P101 (34a)

dP101

dτ
= −P101 + P110 (34b)

dP110

dτ
= −P110 + P111 (34c)

dP111

dτ
= −2P111. (34d)

These equations differ from (31) in that flipping events caused by the front are excluded. The
initial condition again mirrors the stationary state (P100, P101, P110, P111)|τ=0 = 1

6 (1, 1, 1, 3).
By solving the evolution equations, the age-dependent density of the second site, c2 =
P101 + P111, is

c2(τ ) = 1
3 (2τ − 1) e−τ + e−2τ . (35)

Already, we can justify the non-monotonic behavior seen in figures 7 and 9: c1 > c2 for
τ < τ∗ with τ∗ = 0.8742 while c1 < c2 for otherwise. In general, all densities exhibit a
simple exponential decay with age, ck(τ ) ∝ e−τ as τ → ∞. We conclude that pinned fronts
faithfully capture ageing.

4. Conclusions

In conclusion, we reformulated the bit flipping process underlying the simplex algorithm
as a nonequilibrium dynamics problem and studied spatial and temporal properties using
theoretical and computational methods. Overall, we find that the infinite interaction range
leads to rich phenomenology. There is a front that propagates ballistically with a nontrivial
velocity that is governed by the length of the occupied strings containing the front. The
propagating front includes a deep depletion zone: vacant sites outnumber occupied sites with
the total excess of unoccupied sites growing logarithmically with depth. The flipping process
is characterized by significant spatial correlations. For example, the likelihood of finding
strings of consecutively occupied sites is strongly enhanced.

The flipping process also exhibits nontrivial dynamics. Successive front jumps are
correlated and additionally, there is ageing and revitalization as young fronts are fast but
old fronts are slow. Underlying this behavior is the fact that the state of the system just after a
jump mirrors the state of the system just before a jump.
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We slightly modified the original flipping process by pinning the front. Qualitatively
and quantitatively, pinned fronts and propagating fronts are very close. We demonstrated
analytically much of the interesting phenomenology including spatial correlations and ageing
for pinned fronts.

Ageing is usually characterized by using two different times [14]. Here, in contrast, the
time elapsed since the latest front yields a natural definition of age and a characterization of
the dynamics that complements time itself. Of course, ageing in the current context is within
a nonequilibrium steady state.

We comment that there is an alternative way of studying the density profile through an
average at a given lattice site over all realizations [15]. The corresponding average density
ρ̃k(t) reaches a stationary form once the average and the variance are taken into account,

ρ̃k(t) → �

(
k − vt√

Dt

)
(36)

with �(−∞) = 0 and �(∞) = 1/2. This approach has a disadvantage: the scaling function
�(x) is dominated by fluctuations in the position of the front. In other words, the density
profile ρk is smeared because of diffusion. These less interesting diffusive fluctuations are
suppressed when the front profile is probed in a reference frame moving with the front.

We also presented a systematic solution method of small systems and successfully
demonstrated how to extrapolate relevant parameters for infinite systems. Yet, since
the complexity grows exponentially with system size, such computations quickly become
prohibitive. We have also seen how most quantities of interest require an infinite hierarchy
of equations. Finding an appropriate theoretical framework with closed evolution equations
remains a formidable challenge. Nevertheless, the pinned front process provides a powerful
theoretical framework.
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Appendix A. Transition matrix for propagating fronts

The evolution equations for the configuration probabilities in a finite segment of size k can be
represented in the matrix form

dP

dt
= MP. (A.1)

Here, P is the vector P = {P1j |0 � j � U − 1} where j , written as a binary, is in increasing
order and U = 2k−1. For example, when k = 4 the state vector is (P1000, P1001, . . . , P1111),
with U = 8 entries. The elements of this vector equal the probabilities that the system is in
the respective configuration. Also, M is the U × U transition matrix whose elements equal
the transition rates between the corresponding configurations.

The transition matrix M is a sum of three matrices

M = M1 + M2 + M3. (A.2)
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The matrix M1 represents transitions where the front does not move and the matrix M2,
transitions where the front moves. We quote the first two for k = 4,

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1

1 1

1 1

1

1 1

1

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

M2 = 1

8
×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 2 1 1

4 2 1 1

4 2 1 1

4 2 1 1

4 2 1 1

4 2 1 1

4 2 1 1

4 2 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The third matrix M3 is diagonal and it guarantees that each column of M sums to zero.
We note that the transition matrix is sparse. The steady state probability equals the zeroth
eigenvector, MP = 0. Finally, the velocity follows from the average advancement expected
in each configuration. This advancement is represented by the vector J and for example,
J = (1, 1, 1, 1, 2, 2, 3, 5) for k = 4. The velocity is simply the scalar product, v = J · P.

Appendix B. Transition matrix for pinned fronts

Using the matrix notation in (A.1), the evolution equations for k = 4 involve the following
transition matrix:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 2

−2 1 2

−2 1 2

−3 2

1 −2 1 1

1 −3 1

1 −3 1

1 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.1)

This matrix can also be decomposed as for moving fronts and contains the same M1 as
for moving fronts but an M2 with only 1’s on the antidiagonal (reflecting the pinned front
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assumption). In this case, the steady state probabilities are

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1000

P1001

P1010

P1011

P1100

P1101

P1110

P1111

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

240
×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

92
28
22
18
27
13
17
23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.2)

Thus, the density is ρ3 = 41/120 and the string probability is P4 = 23/240.
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[4] Gärtnert B, Henk M and Ziegler G M 1998 Combinatorica 18 349
[5] Balogh J and Pemantle R 2007 Random Struct. Algorithm 30 464
[6] Ritort F and Sollich P 2003 Adv. Phys. 52 219
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